

Methodology for Developing the Natural Gas Price Forecast

New York Independent System Operator Timothy Duffy Manager, Economic Planning

Electric System Planning Working Group March 12, 2013 KCC

Development of Gas Price Forecast

- The starting point for the development of the Natural Gas Price forecast is EIA's Annual Energy Outlook (AEO) that is published each year in January. The AEO provides a multi-year forecast of the annual average of the National Delivered Price in nominal dollars.
- Based on EIA Form 923 data, the National Average Delivered Price is, on average, 110% of Henry Hub price.
- To obtain a regional annual average delivered price, a multiplicative factor (i.e. a basis) is applied to the AEO forecast. This *basis* reflects local/regional delivery charges and taxes.

Calculating Annual Basis for Downstate

- This Illustration outlines the development of Annual Basis for Downstate (relative to National Average Delivered Price)
- It is based on the last five years (2008-2012) of weightedaverage prices for Henry Hub and Transco Zone 6 (NY)
 - Calculated using daily spot prices weighted by the mmbtu traded
 - A system of rising weights (2008: lowest & 2012: highest) is designed to capture recently observed structural shifts in the Transco Z6 price
- National Average Delivered Price proxied by 110% of Henry Hub price
- Downstate Delivered Price proxied by Transco Z6 price plus a burden representing tax & delivery
 - NYISO MMA applied a burden of 8.9725% on Transco Z6 price for calculations involving In-City reference prices till 2009; subsequently, the figure became 7.015%.

Illustration: Annual Basis Burden = 9% Est. National Est. Downstate Transco Henry Hub Z6 (NY) **Delivered** Price **Delivered** Price **Annual Basis** Col. D = (1+ Col. C = 1.1 * Col. A Burden %) * Col. B Col. E = Col. D / Col. C Col. A Col. B 2008 8 7 7.7 8.72 1.13 2009 9 9.9 10.90 10 1.102010 5 5.35 1.22 4 4.4 2011 4 5 5.35 1.22 4.4 2012 3 4 3.3 4.28 1.30 Weighted Average Annual Basis for Downstate 1.23 (Weights for 2008-12, respectively, 0.75, 0.12, 0.175, 0.255, & 0.375) Burden = 7%

Development of Gas Price Forecast

Prices are expressed as \$/mmbtu

3 Gas Price Zones for NYCA

- Until Jun. 2012, CARIS deployed a 2-tier pricing system: an Upstate price for Zones
 A – I (proxied by the Tetco-M3 price) and a Downstate price for Zones J/K (proxied by the Transco Z6-NY price).
- ESPWG requested a reexamination of Natural Gas Prices, especially in the context of Upstate

3 Gas Price Zones for NYCA

- Review of publicly available information revealed that large units in the Mid/Upper Hudson Valley region (Zones F & G) acquired gas at prices higher than what was assumed in CARIS.
- The pipeline hub that is most appropriate for these units is the Tennessee Z6
- Historically, Tennessee Z6 prices have been greater than Tetco M3 (now used for Zones A-E) and less than Transco Z6 (NY)
- The new 3-tiered system makes for a more accurate representation: Upstate – Zones A – E; Midstate – Zones F – I; Downstate – Zones J & K.

Applying Monthly (Seasonal) Indices

- In order to reflect seasonal/monthly changes in market conditions that lead to intra-year volatility of Natural Gas Prices, multiplicative monthly indices are applied.
- Historical seasonal factors are calculated using the ratio of the observed monthly price to the annual average price based on data from last 5 years (2008-2012)
- For a given month, the average of the actual seasonal factors from the last five years is the forecasted raw seasonal index.
- The 12 raw seasonal (monthly) indices are normalized such that they average to 1.

Illustration: Seasonal Indices

					Avg. of 2011 Monthly Price	es:	
/ear	Month	Actual	Annual Average	Monthly Ratios			
			\frown		Calculation of Seasonal Indices		
2011	1	9	5.17	1.74			
2011	2	6	5.17	1.16	Jan		
2011	3	5	5.17	0.97	2008 1.1		
2011	4	5	5.17	0.97	2009 1.9		
2011	5	6	5.17	1.16	2010 1.5		
2011	6	5	5.17	0.97	2011 1.74		
2011	7	6	5.17	1.16	2012 1.54	Month Seasona	al Indices
2011	8	4	5.17	0.77		\rightarrow	1.56
2011	9	4	5.17	0.77	Average 1.56	2	1.14
2011	10	4	5.17	0.77		3	0.9
2011	11	4	5.17	0.77		4	0.8
2011	12	4	5.17	0.77	Feb	5	0.9
2012	1	5	3.25	1.54	2008 1.1	6	0.9
2012	2	3	3.25	0.92	2009 1.2	7	1
2012	3	2	3.25	0.62	2010 1.3	8	0.9
2012	4	2	3.25	0.62	2011 1.16129	9	0.8
2012	5	3	3.25	0.92	2012 0.923077	10	0.8
2012	6	3	3.25	0.92		11	0.8
2012	7	3	3.25	0.92	Average 1.14	12	1.51
2012	8	3	3.25	0.92			
2012	9	3	3.25	0.92	5/3.25 = 1	.54	
2012	10	3	3.25	0.92			
2012	11	4	3.25	1.23			
2012	12	5	3.25	1.54			
			'\				
				thu Drice for D	2012		
			Avg. Won	uny Price for De			

Seasonal Indices Applied to Annual Trend

From Monthly to Weekly Forecasts

- Month-to-month variations/volatility in forecasted prices result from the application of monthly seasonal scalars. This assumes that prices are stable across any given month.
- However, there is considerable intra-month volatility, especially during Winter months.
- To reflect weekly price movements, the monthly factors need to be calibrated to capture intra-month changes.

Weekly Calibration Methodology

- Assume current seasonal indices as monthly averages, i.e. the value of seasonal index at midmonth
- 2. Interpolate scalars such that the last week of, say, March, more closely resembles the first week of April, than it does the first week of March
- 3. The resulting dynamics are such that there is appropriate gradation not only between January and December, but also between the first and the last days of a month.

Weekly Calibration Methodology

Weekly Calibration Methodology

Backcast Using Forecasted Annual Prices

Backcast of Transco Zone 6 (NY) based on <u>forecasted</u> annual average prices (based on AEO 2012 & basis calculated using 2007-11 data) and the forecasted Seasonal (Monthly) Indices

The New York Independent System Operator (NYISO) is a not-for-profit corporation responsible for operating the state's bulk electricity grid, administering New York's competitive wholesale electricity markets, conducting comprehensive long-term planning for the state's electric power system, and advancing the technological infrastructure of the electric system serving the Empire State.

www.nyiso.com